Project Goals

Goal: The synergistic development of *complete* piezoelectric actuation systems with integrated electronic drivers, material transduction, and novel internal compliant mechanical transmissions.

Objectives

- Compliant Internal Transmission with Integrated Electronics
 - compact size
 - large stroke, high force, fast response
 - efficient
 - high power density and high specific work
- Integrated predictive models and easy to use design tools
- Physical hybrid actuation demonstration
- Failure mode and life cycle data
- Low cost, rapid manufacturing
- Successful application demonstration

Active Compliant Transmission

Active Compliant Transmissions efficiently transform mechanical input from internal /external sources into mechanical output of a desired form (force, deflection, bandwidth, etc.)

Unique because:

- Both external and embedded internal piezoelectric inputs
- Integrated electronics
- Load-bearing substrates with tailored stress regions according to material

INertially STAbilized Rifle (INSTAR)

Marksmanship fundamentals require extensive and periodic training to master and degrade drastically under combat stress.

Reduction in Fine motor Skills due to: Accelerated Heart Rate, Fatigue, Stress, and Environmental Conditions

Maintaining desired aim point vs. natural aim point

Improper Breathing

Recoil avoidance/Anticipation

Improper Trigger Squeeze

INSTAR Demonstration

Goal: Eliminates aiming error sources by stabilizing barrel assembly (2 DOF), effectively compensating for small user induced disturbances.

Potential Payoffs:

- Improved Soldier <u>Survivability</u>
- Increased lethality and "stowed" kills
- Reduced ammunition requirements/cost/logistics burden
- Faster training cycles

Customers:

- Material Developers Joint Service Small Arms Program, PM Small Arms
- Requirement Developers Infantry School, USMC Special Operations, Rangers

Team Members and Primary Contributions

CORE TEAM

Diann Brei, Principal Investigator UM - Mechanical Engineering

Project Administrator, Design Tools, Actuation System Architecture Design, Integrated Modeling, Actuator Testing/Qualification

Mary Frecker

Penn State - Mechanical Engineering

Compliant Transmission Optimization and Design Tools

Doug Lindner

Virginia Tech Electronics. Design, Fabrication, and Testing

John Halloran

UM - Materials Science

Material Study, Reliability Study, Material Testing and Characterization

Aaron Crumm

Manufacturing

Design for Manufacturability, Manufacturing Process Development, Actuator Prototype Fabrication, Cost Analysis, Transition to Commercial Market

MULTIPURPOSE MARKETS

- MILITARY
- INDUSTRIAL
- **COMMERCIAL**
- Sports
- LAW ENFORCEMENT

ELECTRICALLY INTEGRATED COMPLIANT TRANSMISSION ACTUATION TECHNOLOGY

INSTAR

Chris LaVigna TSI

- •Gun Design
- •Control Design
- •Open and Closed Loop Demonstration
- •Transition to Commercial Markets

Mike Mattice and Robert Testa TACOM/ARDEC

- •Gun Specification
- •Firing Demonstration
- •Transition to Military
- •Gun Platforms

POTENTIAL

Synthetic Jets •Boeing

Precise Munitions

•TACOM/ARDEC

HYPER Valves

- •Saturn
- •Eaton
- •ARC-Tacom/ARDEC

Approach

- Active Compliant Transmission Optimization
- Integrated Electronic Drivers
- Integrated Actuation System Modeling
- Actuator Manufacturing
- Actuator Performance Validation
- Reliability Study
- Transition to Military/Commercial Platforms

